Construction of Bases for Permeable Interlocking Concrete Pavements – Part I

When carefully constructed and regularly maintained, permeable interlocking concrete pavement (PICP) should provide 20 to 25 years of service. Its service life is measured by the ability to store and infiltrate runoff as well as support vehicular traffic with little or no rutting. Regular inspection and maintenance are required to track performance, identify problems and implement solutions. The PICP owner plays a key maintenance role that helps successful long-term PICP performance. However, PICP performance begins with the contractor correctly building the open-graded subbase and base.

Subbase, Base and Bedding Materials

ICPI recommends certain ASTM stone gradations for the subbase, base and bedding layers. The gradations for these sizes are identified with numbers. These numbers and gradations are found in ASTM D 448, Standard Classification for Sizes of Aggregate for Road and Bridge Construction. ICPI recommends No. 2 stone subbase because it is very stable under construction equipment and has a high water storage capacity (No. 3 also works well). Also recommended are No. 57 stone for the base (over the No. 2) and No. 8 stone for the bedding layer. Figure 1 shows a typical PICP cross section.

ASTM gradations are provided in Table 1. All of these stone products are washed at the quarry which removes most of the dust and fines. Their open gradation (i.e., no smaller particles that fill around the larger stones) allows these materials to store water and infiltrate it back into the base. The absence of fines from washing helps minimize the potential for clogging the soil subgrade while in service.

The No. 2 subbase thickness is typically 6 to 18 in. (150 – 450 mm), depending on the amount of water storage required, as well the amount of traffic and soil type. (See Figure 2.) The water storage capacity of this layer is typically around 40% of the total base volume. The 4 in. (200 mm) thick No. 57 stone layer is used for the base and has a water storage capacity between 30% and 35%. (See Figure 3.) Instead of sand, a 2 in. (50 mm) thick No. 8 stone functions as the bedding layer and jointing material. No. 8 stone has about 20% void space between its particles.

All stone materials should be crushed for the highest interlock and stability during construction and load-spreading capacity during service. There are variations on these ASTM gradations that have been successfully used across North America. Many state and provincial departments of transportation have specifications similar to the ASTM gradations. These are acceptable as long as the bedding layer chokes into the base and the base into the subbase, thereby creating a stable structure for traffic.

Figure 1. Permeable interlocking concrete pavement (PICP) relies on the water storage capacity of various layers of compacted open-graded stone base.
Estimating Quantities
Quarries supplying crushed stone should be able to provide the bulk density of open-graded aggregate per ASTM C 29 Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. If not, the test can be done by a soils testing laboratory. This test approximates the density in pounds per cubic foot or kilograms per cubic meter. For example, a No. 57 stone might have a bulk density of 120 lbs/ft3 (1,922 kg/m3). Therefore, a U.S. ton would consist of about 17 ft3 (0.48 m3). At 4 in. (200 mm) thick, this would cover about 50 sf (4.6 m2). Similar calculations can be done on other stone sizes when the bulk density is known. Open-graded stone base materials will cost more than dense-graded base materials since open-graded stone is washed and handled separately from other materials at the quarry.

The Goal: Eliminating Clogging
Preventing and diverting sediment from entering the base and pavement surface during construction must be the highest priority. The best situation is when aggregates can be dumped, spread and compacted when they arrive at the site. This requires close coordination with work crews and the quarry or trucking company delivering the aggregate. If this type of coordination isn’t possible, aggregates will need to be stored on piles near the excavated area. This, of course will involve more labor expense with time taken to move the aggregate from piles into the excavation. If aggregates are stored in piles on the site, storing them on hard pavement or on geotextile over soils will help keep them from getting contaminated by soil.

Extra care must be taken to keep sediment completely away from the stone materials and the open excavation. Simple practices such as keeping muddy construction equipment away, installing silt fences, staged excavation, and temporary drainage swales that divert runoff away from the area will make the difference between a pavement that infiltrates well or poorly. A simple practice to minimize mud and sediment transport from getting on the base materials is to place geotextile over the base at the construction entrance and secure it with a thin layer of No. 57 stone. The stone and fabric traps mud deposited by construction equipment and keeps it from getting into the base. The geotextile and stone layer are removed to receive the remaining base or bedding layer.

Moreover, the pavement should not receive runoff until the entire contributing drainage area is stabilized with vegetation. Obviously, vegetation doesn’t grow overnight and rain will likely fall right after the pavement is installed. Therefore, erosion control matting can stabilize soil while grass or other vegetation starts to grow. This should be included in the con-

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>No. 2</th>
<th>No. 57</th>
<th>No. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in. (75 mm)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 in. (63 mm)</td>
<td>90 to 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 in. (50 mm)</td>
<td>35 to 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 in. (37 mm)</td>
<td>0 to 15, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 in. (25 mm)</td>
<td>95 to 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4 in. (19 mm)</td>
<td>0 to 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 in. (12.5 mm)</td>
<td>25 to 60, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 in. (9.5 mm)</td>
<td>85 to 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>0 to 10, 10 to 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>0 to 5, 0 to 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 16 (1.16 mm)</td>
<td>0 to 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. ASTM Sieve Sizes for No. 2, 57 and 8 Stone Sizes

Figure 2. No. 2 subbase stone is spread and eventually compacted over a non-compacted soil subgrade for this large PICP parking lot in Illinois.

Figure 3. Smaller than No. 2 stone, No. 57 aggregate provides a base to receive the bedding material and pavers.

Figure 4. No 8. bedding material and joint material. Finer gradations may be used such as No. 89, 9 or 10. Sand is never used.
Sometimes there is a stretch of time between excavation and base installation. The opening will collect water and sediment from rainstorms. One technique for reducing silting and clogging of soil is to excavate the base within 6 in. (150 mm) of the final bottom elevation. Like a temporary detention pond, this area can contain water during storms over the construction period and drain via temporary drain pipes. Sediment is allowed to collect on the surface of the soil subgrade.

Heavy equipment should be kept from this area to prevent compaction. If equipment needs to traverse the bottom of the excavation, tracked vehicles can reduce the risk of soil compaction. As the project progresses and base is ready for placement, sediment and the remaining soil depth can be excavated out to the final grade prior to installing the subbase and base stone. Depending on the project design, this technique might eliminate the need for a separate sediment basin during construction.

Soil Compaction

PICP is usually built over native, undisturbed soils. When excavated, native soils have some degree of natural compaction. Their natural, in-place density increases as the excavation depth increases. ICPI doesn’t recommend compacting soils under PICP other than grading and trimming them for drainage. Compaction greatly reduces a soil’s infiltration capacity. Obviously, there will be equipment passing over the soil subgrade surface and this will bring some compaction. However, compaction incidental to construction equipment is nowhere near the same density or depth brought about by compacting soil with compaction equipment typical to parking lot or road construction.

If the initial, undisturbed soil infiltration can be maintained during excavation and construction, it likely that the base will drain into the soil subgrade as designed. If the soil is inadvertently and repeatedly compacted by equipment during construction, there will be a substantial loss of infiltration. A loss is acceptable if the infiltration rate of the soil when compacted was initially considered during design and in drainage calculations. However, this should be verified at the pre-construction meeting with the design engineer.

In rare situations, compacting low California Bearing Ratio (CBR) (typically clay) soils (<5% CBR) may be necessary. This attains sufficient structural support and

minimizes rutting from vehicular traffic. These soils should be compacted to at least 95% of standard Proctor density per ASTM D 698. Nuclear density tests should be performed to verify compaction to this guideline. A network of perforated drain pipes in the open-graded base will likely be required to remove water since compaction will greatly reduce the soil’s permeability. Again, compacting soils isn’t common to most PICP projects.

Geotextiles

Geotextiles are used in some permeable pavement applications and are optional when using a No. 2 aggregate subbase. No. 2 stone essentially acts as a filter layer while providing additional stability because of the large stones spread stress across the soil subgrade. For vehicular applications, high-quality fabric should be specified that resists the puncturing by coarse, angular aggregate from compaction during construction and from repeated wheel loads during its service life. Bases should have their sides covered in geotextile. If using geotextile over the top of the soil subgrade, ICPI recommends a minimum of 1 ft (0.3 m) overlap in well-drained soils and 2 ft (0.6 m) overlap on poor-draining weaker soils (CBR < 5%).

Open-graded Aggregate Bases

No. 2 subbase material should be spread in minimum 6 in. (150 mm) thick lifts and compacted with a static roller. At least four passes should be made with a minimum 10 ton (9 T) steel drum roller. The roller is often in vibratory mode for the first few passes and then static mode (no vibration) for the final passes. This compaction method applies to the No. 2 and No. 57 layers.

Figure 5 shows a dual drum roller compacting the open graded aggregate. The No. 57 base layer can be spread and compacted as one 4 in. (100 mm) lift. Figure 5 shows the No. 57 aggregate spread over the No. 2 stone and being compacted with a heavy plate compactor. This equipment is also effective in compacting No. 57 stone. Compacting will
In conclusion, key considerations in constructing a PICP base is keeping it free from sediment and fines. These materials come from equipment or from eroding surfaces near them. They also come from crushing stones during compaction. These situations require constant inspection on the part of the contractor to help ensure long-term PICP infiltration. In the November issue, measuring base density will be covered.

ICPI has a number of resources available to assist with your next project. Permeable Interlocking Concrete Pavements – Selection, Design, Construction and Maintenance provides guidance for design professionals and contractors. ICPI has a continuing education program entitled Construction of Permeable Pavements as part of the new ICPI Level II Concrete Paver Installer Certification program. ICPI has begun development of a separate certification program for PICP contractors. The program is expected to have a classroom and hands-on components. This magazine will report on these developments in the coming months.